THE CHROMATOGRAPHIC AND SPECTRAL PROPERTIES OF STILBENE DERIVATIVES

W. E. HILLIS AND NARIYUKI ISHIKURA* Division of Forest Products, C.S.I.R.O., South Melbourne (Australia) (Received August 14th, 1967)

INTRODUCTION

A small number of groups of compounds are characterized by the intense blue fluorescence they show under ultraviolet light. The stilbenes constitute one of these groups. In recent years, the hydroxystilbenes of plants have attracted attention because of their fungicidal and fungistatic properties¹, their effect on pulping under acid conditions², the cause of coloration in pulps³, etc. The study of stilbenes, however, is usually difficult on account of their instability and the small quantities present in plant tissues. In order to resolve some of the difficulties associated with their identification, this paper describes the spectrophotometric, paper chromatographic and thinlayer chromatographic properties of stilbenes from plant sources so as to assist in the prediction of their chemical structure. A chromatographic examination of substituted synthetic stilbenes was made recently⁴.

EXPERIMENTAL

Chromatographic examination

 R_F values of the stilbenes were obtained by spotting a few micrograms of each compound (in methanol) on Whatman No. I paper and all compounds were chromatographed by the descending technique under comparable conditions in a constant temperature room at 20°. The following solvents were used: (I) benzene-acetic acidwater (125:72:3); (II) *n*-butanol-acetic acid-water (6:1:2); (III) *m*-cresol-acetic acid-water (50:2:48); (IV) phenol-2 N acetic and hydrochloric acids (1:1); (V) *n*butanol-ethanol-water (4:1:5); and (VI) 30% acetic acid. The chromatograms were examined under U.V. light (254 nm and 365 nm) before and after exposure to ammonia vapour. Further visualisation of each spot was effected by spraying with diazotized *p*-nitroaniline in 20% sodium acetate, diazotized *o*-dianisidine (0.2 g in the mixture of 10 ml of dioxane and 20 ml of water) with ammonia vapour, diazotized sulpanilicsodium carbonate (Pauly's reagent), 0.5% potassium permanganate followed by washing with water and 2% aqueous solution of phosphomolybdic acid with ammonia vapour. The R_F values reported are averages of three or more determinations.

Chromatoplates of Silica Gel GF_{254} (E. Merck, A.G., Darmstadt) with a thickness of 0.25 mm were prepared in a constant temperature room at 20°. The following solvents were used: (A) methanol-chloroform-petroleum ether (b.p. 90-120°) (2:4:7);

* On leave from the Department of Biology, Kumamoto University, Japan.

(B) methanol-chloroform-petroleum ether (b.p. $90-120^{\circ}$) (1:2:7); (C) benzenemethanol (9:1); (D) benzene-methanol-acetic acid (45:8:4); (E) benzene-dioxaneacetic acid (90:25:4); (F) chloroform-ethyl acetate-formic acid (5:4:1); and (G) toluene-ethyl formate-formic acid (5:4:1).

Ultraviolet spectra

All spectra were determined in absolute ethanol solution with an Optica CF4 recording spectrophotometer using I cm silica cells. After determining the spectra of

TABLE I

STILBENES EXAMINED

Stil- bene	Substi	tuents*							Common name
oene	3	4	5	2'	3'	4'	5'	6'	
I			<u> </u>						<i>cis</i> -Stilbene
2	—	<u> </u>						·	trans-Stilbene
3		OH	<u> </u>	<u> </u>					4-Hydroxystilbene
4	\mathbf{OH}	·	\mathbf{OH}			~~~~			Pinosylvin
5		OH	 ·			OH			4,4'-Dihydroxystilbene
5 6	\mathbf{OH}		OH		· · ·	OH			Resveratrol
7	OH		OH		OH	OH			3,5,3',4'-Tetrahydroxystilbene
ġ.	\mathbf{OH}		\mathbf{OH}	OH		OH			Oxyresveratrol
9	\mathbf{OH}	R	OH	OH		OH			Chlorophorin
10	OH	·	OMe			¹			Pinosylvin monomethyl ether
II					OMe	OH			3'-Methoxy-4'-hydroxystilbene
12	OH		\mathbf{OH}		OH	OMe			Rhapontigenin
13		OMe			OMe	OH			4,3'-Dimethoxy-4'-hydroxy-
•									stilbene
14	OMe		OMe			OH			Pterostilbene
14A	OMe		OMe			OA			Acetate of pterostilbene
15	OMe	OH	—		OMe	OH			3,3'-Dimethoxy-4,4'-dihydroxy- stilbene
16	OMe	OMe		OMe		OMe		OMe	3,4,2',4',6'-Pentamethoxystilbene
6G	OG		OH		_	OH			Resveratrol glucoside
7G	OG		OH		\mathbf{OH}	OH		· · · · · ·	Astringin
IOG	OG		OMe			·			Pinosylvin monomethyl ether glucoside
IIG					OMe	OG			3'-Methoxy-4'-hydroxystilbene glucoside
IIGA				·	OMe	OGA			Acetate of 3'-methoxy-4'- hydroxystilbene glucoside
12G	OG	· · ·	OH		OH	OMe			Rhapontin
	OGA		ŎĂ	·	0A	OMe		<u> </u>	Acetate of rhapontin
13G		OMe			OMe	OG			4,3'-Dimethoxy-4'-hydroxy-
-5-					~ = 1 = 4	~~			stilbene glucoside
13GA	•, , - ⁻	OMe		<u>-</u>	OMe	OGA			Acetate of 4,3'-dimethoxy-4'- hydroxystilbene glucoside
8A	OA		OA	OA		OA			Acetate of oxyresveratrol
	OGA		ŎĂ		OA	0A			Acetate of astringin
,						~			

* OMe = OCH₃; OG = O-D-glucoside; OGA = acetate of glucoside; OA = acetate; $R = CH_2-CH=C-CH_2-CH_2-CH=C-CH_3$; numbering as follows:

ĊH,

ĊH_a

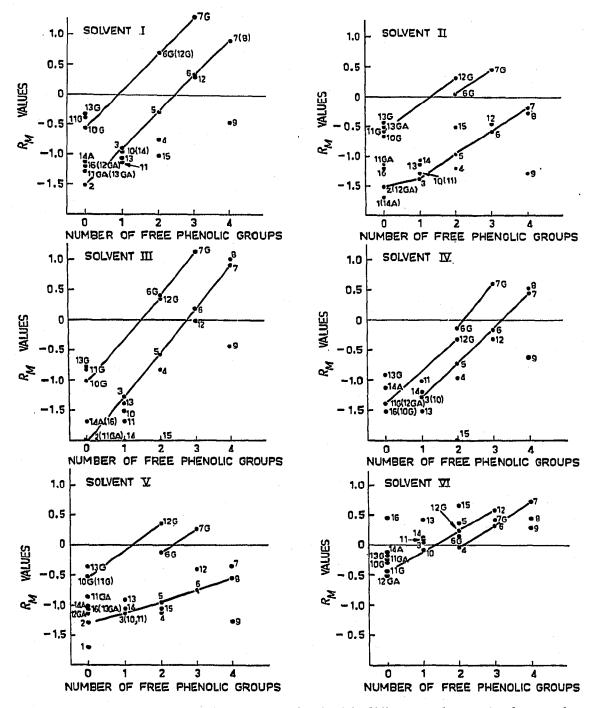


Fig. 1. The relation of R_M values determined with different solvents to the number of free phenolic groups in different stilbenes. The composition of the solvents is given in the text and the numbers on the graphs correspond to the stilbenes listed in Table I.

ethanol solutions of suitable concentration, an excess of powdered anhydrous sodium acetate⁵ was added and allowed to settle in the cuvette before measurements were made. For the determination of the spectra in ethanolic sodium ethylate solutions⁶, 0.2 ml of 0.1 M sodium ethylate was added to 3.8 ml of the solution of each compound and the spectra were determined after 5 min. In order to determine the spectra in

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Dotvenu											
$R_p \times Too R_M$ $R_p \times To$		I		11		Ш		AI		4		11	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$R_F \times 1$	1 1	$R_F imes I_{\ell}$		$R_F \times$		$R_F \times I$	1 1	$R_F \times I$		$R_{F} \times I$	00 R _M
97 -1.309 97 -1.303 97 -1.303 97 -1.373 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -0.1273 87 -0.733 85 -0.733 81 -0.733 81 -0.733 81 -0.733 81 -0.733 81 -0.733 81 -0.733 81 -0.733 81 -0.733 81 -0.733 81 -0.733 81 -0.733 81 -0.733 81 -1.124 93 -1.124 93 -1.124 93 -1.124 93 -1.124 93 -1.124 <	1	66	66671	86	069.1—	l	ľ	ļ	1	98	069'1	00	0.0
89 -0.908 96 -1.380 95 -1.279 95 -1.279 93 -1.124 47 77 -0.573 94 -1.195 87 -0.732 99 -0.134 52 -0.753 31 -0.753 31 -0.753 31 -0.753 31 -0.753 31 -0.753 31 -0.753 31 -0.753 31 -0.753 31 -0.753 31 -0.753 31 -0.753 31 -0.753 31 -0.753 31 -0.759 31 -0.759 31 -0.759 31 -0.759 31 -0.759 31 -0.759 31 -0.759 31 -0.759 27 -0.1124 55 -1.124 55 -1.124 55 -1.124 55 -1.124 55 -1.124 56 -1.129 91 -1.124 57 -1.124 57 -1.1279 91	C1	26	— I.509	67		<u>66</u>	666.1	١	1	95	-1.279	00	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	6 8		<u> 9</u> 6		95	-1.279	95	-1.279	93	-1.124	47	0 022
66 -0.288 90 -0.954 79 -0.575 84 -0.720 90 -0.934 81 111 0.327 79 -0.575 39 0.194 59 -0.733 33 27 39 -0.733 33 27 </td <td>4</td> <td>11</td> <td>0.525</td> <td>94</td> <td>1.195</td> <td>87</td> <td>0.826</td> <td>90</td> <td>-0.954</td> <td>93</td> <td>-1.124</td> <td>52</td> <td>0.035</td>	4	11	0.525	94	1.195	87	0.826	90	-0.954	93	-1.124	52	0.035
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	<u>6</u> 6	0.288	90	0.954	62	0.575	84	0.720	<u>0</u> 6	0.954	31	0.348
III 0.308 60 -0.176 II 0.908 65 -0.239 06 -0.348 16 74 -0.454 95 -1.279 93 -1.279 34 55 -0.369 34 55 -1.279 93 -1.124 55 -1.279 93 -1.124 55 -1.279 93 -1.124 56 -1.124 56 -1.124 56 -1.124 55 -1.124 55 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.127 93 -1.126 93 -1.126 93 -1.127 93 -1.126 93 -1.127 93 -1.126 93 $-$	9	32	0.327	62	0.575	39	0.194	59	-0.158	85	-0.753	33	0.308
III 0.908 65 -0.269 08 1.061 23 0.525 78 -0.550 27 74 -0.454 95 -1.279 73 -0.432 81 -0.630 95 -1.1279 34 93 -1.124 95 -1.279 96 -1.063 93 -1.124 55 -1.124 55 -1.1279 93 -1.1279 93 -1.1279 93 -1.1279 93 -1.1279 93 -1.1279 93 -1.1279 93 -1.1279 93 -1.129 93 -1.129 93 -1.129 93 -1.129 93 -1.129 93 -1.129 93 -1.129 93 -1.129 93 -1.129 93 -1.129 93 -1.129 93 -1.1205 93 -1.1205 93 -1.1205 93 -1.1205 93 -1.1205 93 -1.1205 93	2	II	0.908	<u></u>	0.176	11	0.908	26	0.454	6 9	0.348	16	0.720
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80	11	0.908	65	0.269	80	190'1	23	0.525	78	0.550	27	0.432
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	74	0.454	95	-1.279	73	0.432	81		95	-1.279	34	0.288
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	<u>6</u>	-0.954	95	-1.279	97		95	-1.279	93	-1.124	55	0.088
33 0.308 74 -0.454 51 -0.017 67 -0.308 72 -0.410 2192 -1.1061 93 -1.124 96 -1.1360 93 -1.1051 4493 -1.1124 98 -1.061 99 -1.1055 92 -1.1061 4494 -1.1055 94 -1.195 92 -1.0051 58 -0.908 5894 -1.1055 94 -1.195 99 -1.0051 59 -1.0051 5894 -1.1055 94 -1.1956 93 -1.124 91 -1.0051 5894 -1.1055 94 -1.1956 93 -1.124 91 -1.0051 2695 -1.2095 94 -1.195 93 -1.124 91 -1.0051 2696 -1.1095 94 -1.195 93 -1.124 91 -1.0051 2697 77 0.689 47 0.0522 28 0.410 57 -0.1222 57 -0.1222 42 78 -0.550 82 -0.659 91 -1.005 97 -1.509 97 -0.2355 56 -1.230 73 78 -0.2389 79 -0.575 87 -0.6308 39 -0.2363 53 -0.2363 53 -0.2363 53 -0.2363 53 -0.2363 53 -0.2363 53 -0.2363 53 -0.2363 53 -0.2363 53 -0.2363 53 -0.2363 73 -0.2363 </td <td></td> <td>93</td> <td>-1.124</td> <td>95</td> <td>-1.279</td> <td><u>8</u>6</td> <td>-1.690</td> <td>16</td> <td>1.005</td> <td>93</td> <td>-1.124</td> <td>46</td> <td>0.070</td>		93	-1.124	95	-1.279	<u>8</u> 6	-1.690	16	1.005	93	-1.124	46	0.070
92 -1.001 93 -1.124 96 -1.380 97 -1.509 89 -0.908 28 93 -1.124 98 -1.601 99 -1.195 92 -1.005 58 -1.005 58 96 -1.005 76 -0.501 99 -1.199 92 -1.005 58 -1.005 58 -1.005 58 -1.005 58 -1.005 58 -1.005 58 -1.005 58 -1.005 58 -1.005 58 -1.005 58 -1.005 58 -1.005 58 -1.005 28 -1.001 26 28 -1.001 26 28 -1.001 26 28 -1.001 26 28 -0.269 28 -0.122 57 -0.122 42 26 26 -1.269 28 0.410 57 -0.122 57 -0.122 57 -0.122 57 -0.269 58 -0.569 58 -0.569 28	8	33	0.308	74	0.454	51	0.017	67	0.308	72	0.410	21	0.575
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	92	1.061	93	— I.124	<u> 9</u> 6	—I.380	67		8 <u>0</u>	0.908	28	0.410
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		<u>6</u>	0.954	92	190.1—	66	-1.999	94	-1.195	92		44	0.105
96 -1.005 76 -0.501 99 -1.099 99 -1.999 92 -1.061 18 94 -1.195 94 -1.195 98 -1.699 99 -1.599 92 -1.061 26 17 0.689 47 -0.522 28 0.410 57 -0.122 57 -0.122 42 78 -0.550 82 -0.659 91 -1.124 20 0.602 35 0.269 28 71 -0.389 79 -0.575 87 -0.826 96 -1.380 77 -0.525 66 -1 71 -0.389 79 -0.575 87 -0.826 96 -1.380 77 -0.525 66 -1 71 -0.389 79 -0.575 87 -0.826 96 -1.380 77 -0.525 66 -1 7 17 0.689 33 0.308 30 0.368 67 -1.390 93 -1.124 70 -0.365 63 -1.299 97 -1.129 99 -1.1299 97 -1.599 97 -1.599 96 -1.380 97 -0.365 63 -0.348 73 -0.432 86 -0.788 89 -0.308 70 -0.368 60 -1.269 97 -1.209 97 -1.209 97 -1.509 97 -1.509 97 -1.200 97 -1.200 97 -1.509 97 -1.509 96 -1.380 93 -1.124 70 -0.365 61 -1.200 97 -1.200 97 -1.509 97 -1.509 96 -1.280 93 -1.124 70 -1.200 97 -1.200 97 -1.200 97 -1.500 97 -1.500 97 -1.200 97 -1.200 97 -1.200 97 -1.200 97 -1.200 97 -1.200 97 -1.001 -1.0000 70 -1.00000 70 -1.00000 70 -1.00000 70 -1.00000 70 -1.00000 70 -1.00000 70 -1.00000 70 -1.00000 70 -1.00000 70 -1.00000 70 -1.00000 70 -1.00000 70 -1.000000 70 -1.000000 70 $-1.000000000000000000000000000000000000$	4A	93	- 1.124	98		98		93	—I.124	16	<u>1.005</u>	<u> 3</u> 8	-0.140
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	96		76	0.501	66	-1.999	66	-1.999	92	190'1	18	0.659
I7 0.689 47 0.052 28 0.410 57 -0.122 57 -0.122 42 05 1.279 24 0.454 07 1.124 20 0.602 35 0.269 28 78 -0.550 82 -0.659 91 -1.1005 97 -1.509 77 -0.525 73 71 -0.389 79 -0.575 87 -0.826 96 -11.380 77 -0.525 73 71 -0.389 79 -0.575 87 -0.826 96 -11.380 77 -0.525 73 71 -0.389 79 -0.575 87 -0.826 96 -11.380 77 -0.525 73 71 -0.389 79 -0.575 87 -0.826 96 -11.380 77 -0.525 73 8 95 -11.279 93 0.308 30 0.368 67 -0.308 31 0.348 37 69 -0.348 73 -0.4732 86 -0.788 89 -0.908 70 -0.368 60 69 -0.348 73 -0.432 86 -0.788 89 -0.908 70 -0.368 60 69 -1.279 91 -1.005 -1.209 97 -0.368 60 -1.248 70 69 -0.348 73 -0.432 86 -0.778 89 -0.908 70 -0.368 60 -0.249 91 -1.005 $-1-0.92-1$	9	94		94		98 8	-1.690	26	-1.509	92	190.1—	26	0.454
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66	17	0.689	47	0.052	28	0.410	57	-0.122	57	-0.122	42	0.140
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76	0 <u>5</u>	1.279	24	0.454	٥7	1.124	20	0.602	35	0.269	28	0.410
71 0.389 79 0.575 87 0.826 96 -11.380 77 0.525 73 - A 95 1.279 93 1.124 99 1.999 - - 88 0.865 63 - A 94 1.195 97 1.509 97 -1.509 97 -1.509 97 -1.509 97 -1.124 76 - A 94 1.195 97 1.509 97 -1.509 97 -1.509 96 -1.1380 93 -1.124 76 - A 94 1.195 97 1.509 97 -0.788 89 -0.0.308 70 -0.368 60 - A 95 1.279 91 1.005 - - - 92 -1.061 -	00	78	0.550	82	0.659	16		76	-1.509	17	0.525	6 6	-0.288
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51	11	0.389	62	0.575	87	0.826	<u> 9</u> 6	-1.380	17	0.525	73	0.432
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 GA	95	-1.279	93		66	666'1	ł	I	88	0.865	63	0.232
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12G	17	0.689	33	0.308	30	0.368	67	0.308	31	0.348	37	0.232
690.348 730.432 860.788 890.908 700.368 60 1. 951.279 911.005 921.061	12GA	94		67		97		<u> 9</u> 6	-1.380	93	—I.124	26	0-501
- <u>95</u> 1.279 911.005 <u>-</u> <u>92</u> -	13G	69	0.348	73	0.432	86	0.788	80 80		70	0.368	60	-0.176
	13GA	95	-1.279	16			1		1	02	-1 Of T	1	•

326

* See Table I for constitution. ** See text for composition.

J. Chromatog., 32 (1968) 323-336

TABLE II

TABLE III

THIN-LAYER CHROMATOGRAPHY OF STILBENES ($R_F \times 100$)

Stilbene*	Solvent'	* *		· .			
	A	В	С	D	E	F	G
I	94	90	97		95	99	98
2	99	98	97		99	99	99
3	87	68	52		99 84	94	74
4	71	51	25		72	94 83	61
5 6	67	45	23	·	73	. 85	61
6	36	24	IJ		51	71	59
7	36 18	17	07		30	57	49
7 8	21	17 16	oĠ		29	58	47
9	39	14	26	_	49	57 58 86	64
10	52	31	54		75	96	72
II	52 58	43	75		87	97	72 82
12	28	07	19			71	56
13	56	07 38	76		40 86	96	79
14	52	31	50	,		96 96	71
15 6G	бo	42	50 82	,	74 88	97	71 72
ĞG	07	IO	02	II	03	08	07
7G	04	об	00	08	00	06	04
7G 10G	28	12	17	44	06	19	23
IIG	29	14	15	44	04	10	16
12G	08	OI	02	15	03	08	07
13G	30	12	15	45	03	12	16

* See Table I for constitution.

** See text for composition.

ethanolic boric acid-sodium acetate⁷, 0.8 ml of a saturated solution of boric acid in absolute ethanol and an excess of powdered anhydrous sodium acetate was added to 3.2 ml of the solution of each compound. After shaking and allowing to stand for 20 min, the spectrum of each solution was determined.

RESULTS AND DISCUSSION

All the stilbenes examined are tabulated in Table I together with their structural details.

 R_F values for the stillbenes examined are given in Table II. When using solvent system I, containing benzene, special care was taken to ensure a stable temperature and a preliminary equilibration of the papers for one hour or longer was made. Nevertheless the R_F values determined with this solvent fluctuated sometimes in the range of \pm 0.02.

Among the irrigating solvents examined, no solvent was suitable for unhydroxylated stilbenes, *i.e. cis-* and *trans-stilbenes*, as the R_F values were either too high or too low. In all the solvent systems examined, the mobility of stilbenes depends to a large measure on the number of free phenolic groups present in the aglycone. The more highly hydroxylated stilbenes had, as a rule, lower R_F values than the less hydroxylated. Glucosidation of a hydroxyl group causes a large decrease in R_F values in these solvents, except phenol-2 N acetic acid-hydrochloric acid and 30 % acetic acid. In the case of the former solvent, glucosidation of a hydroxyl group in the molecule has an irregular effect on the R_F value, which may be either increased or decreased. In

328

TABLE IV

COLOUR REACTIONS AND FLUORESCENCE OF STILBENES

Stilbene	U.V. light	U.V. light + NH ₃ vapour	Diazotized p-nitro- aniline	Diazotized o-diani- sidine (+ NH ₃)	Diazotized sulphanilic acid	0.5% KMn04*	Phospho- molybdic acid
I	weak	weak dull	<u> </u>		· · · · · · · · · · · · · · · · · · ·	I	
-	dull purple	purple				-	
2	weak purple	weak purple				2	
3	purple	blue	yellow- brown	(brown)	purple \rightarrow yellow	3	violet
4	violet	violet	yellow brown	purple	orange → yellow- brown	7	strong violet
5	purple	blue	yellow- brown	yellow (colourless)	orange → black-brown	3	violet
6	violet	bright blue	brown	purple	yellow- brown	б	strong violet
7	purple	bright white-blue	yellow- brown	ashen purple		2	purple
8	bright blue	bright white-blue	brown	purple	purple → black-brown	5	purple
9	violet	blue	yellow- brown	ashen purple	black- brown	4	violet
10	purple	pale white- blue	yellow- brown	purple (red-purple)	red → yellow- brown	6	faint violet
II	violet	sky blue	black-brown	(brown)	purple → yellow-brown	3	violet
12	purple	white- purple	brown	faint brown	orange → yellow-brown	2	ashen violet
13	violet	blue	black-brown	(brown)		3	violet
14	weak	bright	yellow-	(faint		4	faint
*4	purple	blue	brown	purple)		7	violet
14 A	weak violet	weak violet				I	
15	pale purple	purple				0	
16	purple	purple	·			I	
6G	violet	bright blue	yellow-	ashen	yellow-	4	faint
			brown	purple	brown	•	violet
7 G	bright	whitish	brown	faint	orange	5	ashen
	blue	yellow-green	5.0	black-brown		5	violet
10 G	purple	purple				I	
11 G	weak purple	weak purple	faint yellow-brown			2	
IIGA	pale blue	pale blue				0	
12G	violet	white-pink	red-brown	ashen purple	yellow- brown → brown	5	violet
12GA	weak violet	pale white				0	·
13G	purple	purple	faint yellow- brown			2	
13GA	pale purple	pale purple				0	

* The figure shows the relative sensitivity of each compound with 0.5% potassium permanganate reagent.

J. Chromalog., 32 (1968) 323-336

30 % acetic acid, R_F values of the glucosides were higher than those of their aglucones. Solvent system III was not very suitable for stilbenes as the R_F values of some compounds were too high (0.95), although fairly suitable R_F values were obtained with the glucosides.

The correlation between chromatographic behaviour and the molecular structure is shown distinctly when the function $R_M = \log (I/R_F - I)$ (ref. 8) was substituted for the R_F value. The R_M values of the stilbenes examined are given in Table II and these values in each solvent have been plotted against the number of hydroxyl substituents in Fig. I. Straight-line relationships exist between the R_M values of stilbenes and the number of their free phenolic hydroxyl substituents. However the straight-line relationship is disturbed, to a greater or lesser extent, by the introduction of methoxyl and acetoxyl groups and a di-isoprenoid side-chain into the stilbene molecule.

The R_F values obtained by means of thin-layer chromatography are given in Table III. An increase in the number of phenolic hydroxyl groups in the stilbene molecule lowered the R_F values in all of the six solvent systems used. This was the same in the case of paper chromatography. However, methylation of the hydroxyl groups had an irregular effect on the R_F value and a large fall in R_F value is caused by the glucosidation of a hydroxyl group. Increase in the mobility of the stilbene glucosides was effected by using the benzene-methanol-acetic acid (45:8:4) solvent system, but this solvent, unfortunately, separates into solvent phases. This solvent system (D) may be useful for the separation of the stilbene glucosides, but not for the aglucones.

The colour reactions and the fluorescent colours of the stilbenes are noted in Table IV. The stilbenes have, in general, a blue to purple fluorescence under U.V. light before and after exposure to ammonia vapour. The exceptions—rhapontin (12G) and astringin(7G)—emit different fluorescent colours, rhapontin has a white-pink fluorescence when exposed to ammonia vapour, and similarly astringin emits a white yellow-green fluorescence. *trans*-Stilbene emits stronger purple fluorescence than the

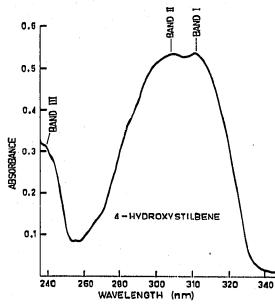


Fig. 2. U.V. absorption spectrum of 4-hydroxystilbene.

SPECTRA	SPECTRA OF STILBENES						•			
No.	Stilbene	No. of band	λ _{max} (nn) in ElOH	+ NaOEt	Ahmax (band I)	+ satd. NaOAc	AA _{mar} (band I)	+ NaOAc- H ₃ BO ₃	Admax (band I)	•
ан на с	cis-Stilbene	II	281	281	*0	281	*0	281	*0	
8	trans-Stilbene	I	310 298	310 298	0	310 298	0	310 298	0	
ŝ	4-Hydroxystilbene	III I	322 309 235S	355 323S 245	33	322 308 	0	322 307	0	
4	Pinos. ivin		312 303 	316 	4-	312 303	0	311S 301	I 1	
. 19 .	4,4'-Dihydroxystilbene	II	330 307	350 328	30	329 304	1	330 303	0	
Q	Resveratrol	III III	323 310 —	338S 324 251	15	323 310 	0	323 311 	0	
7	3,5,3',4'-Tetrahydroxystilbene	III I	330 309S 253	350 256	20	334 307S 229		343 310 264	13	
∞	Oxyresveratrol	III	332 305 296S	353 317 308S	21	331 306 295 S	1-	326 307 294	- 6	
6	Chlorophorin	III III	335 307 296S	358 347 307S	23	330 309 296	1	327 308S 293	80	,
10	Pinosylvin monomethyl ether	I	309 302	314 306S	Ŷ	310S 303	L	309S 301	0	
II	3'-Methoxy-4'-hydroxy- stilbene	I	327 305 234	365 317S 253	38	328 305 235	1 1	326 305 	1	

W. E. HILLIS, N. ISHIKURA

J. Chromatog., 32 (1968) 323–336

TABLE V

** ** 	0	21	5		0	0	13	0	0		9	
316S 307 296S	332 306	303	309		335 327 243	324 311	344 309	310 302	322 303		323 (316S)	309
I	0	L	4	1	0	0	1	0	0	I]	I	
326 308S 241	332 307	317	310	337 309S 296S	335 326S 243S	324 311	330 308S	310 302	322 303	320 304	330	309S
7 	28	34	I	23	o	21	15	I	0	0	- 3	
3 ²⁵ 310S	360 317 257	358 324S	315	359 308S 	335 327 246	345 328	346 307	311 302	322 303	321 305	327	308 240
327 310S	332 308 	324 313	314	336 310S 298S	335 327S 243	324 310	331 297	310 302	322 304	321 303	329	308S
III III		I	Ļ			I		II	III	II	Ĩ	
Rhapontigenin	4,3'-Dimethoxy-4'-hydroxy- stilbene	Pterostilbene	Acetate of pterostilbene	3,3'-Dimethoxy-4,4'- dihydroxystilbene	3,4,2',4',6'-Pentamethoxy- stilbene	Resveratrol glucoside	Astringin	Pinosylvin monomethyl glucoside	3'-Methoxy-4'-hydroxy- stilbene glucoside	Acetate of 3'-methoxy-4'- hydroxystilbene glucoside	Rhapontin	
1 3	13	14	I4A	15	9 1	6 G	76	Doi	511	IIGA	12G	· · · · · · · · · · · · · · · · · · ·

antin Kije 331

(continued on p. 332)

							•		
N0.	Stilbene	No. of band	A _{max} (nm) in ElOH	+NaOEI	Akmar (band I)	+ satd. NaOAc	Δλ _{max} (band I)	+NaOAc- Almar H ₃ BO ₃ (band I)	Almax (band 1)
12GA	Acetate of rhapontin	I	323	323	0	323	0	322	1
		II	305S	305S		308S		(3155) 306	
13G	4,3'-Dimethoxy-4'-hydroxy- stilbene glucoside	III	330 307S 234S	330 306S —	o	330 306S 278	0	329 307S 	1
13GA	Acetate of 4,3'-dimethoxy-4'- hydroxystilbene glucoside	1	328 3085 	329 307S 	щ	328 308S 235	0		
8A	Acetate of oxyresveratrol	II	302	302	*0	301	*I	302	*0
7GA	Acetate of astringin		312 301 237	312 301 235	0	312 301 232	o	312 301 233	0

332

J. Chromatog., 32 (1968) 323-336

TABLE V (continued)

S = inflection.= $\Delta \lambda_{max}$ of band II.

CHROMATOGRAPHIC AND SPECTRAL PROPERTIES OF STILBENES

TABLE VI

Stilbene	λ _{max} (nm) in EtOH (band I)	Stilbene	λ _{max} (nm) in EtOH (band I)	⊿۵*
Introduction of one hydroxyl	group		-	
trans-Stilbene	310	4-Hydroxystilbene	322	12
Pinosylvin	312	Resveratrol	323	II
Pterostilbene	324	3,3'-Dimethoxy-4,4'-dihy- droxystilbene	336	15
4-Hydroxystilbene	322	4,4'-Dihydroxystilbene	330	8
Resveratrol	323	Oxyresveratrol	332	9
Resveratrol	323	3,5,3',4'-Tetrahydroxy- stilbene	330	7
Introduction of one methoxyl	group			
4-Hydroxy stilbene	322	3'-Methoxy-4'-hydroxy- stilbene	327	5
3'-Methoxy-4'-hydroxy- stilbene	327	4,3'-Dimethoxy-4'-hydroxy- stilbene	332	5
Modification of a hydroxyl gr	oup to methox			
Pinosylvin	312	Pinosylvin monomethyl ether	309	3
3,5,3',4'-Tetrahydroxy- stilbene	330	Rhapontigenin	327	—3
Other types				
4,4'-Dihydroxystilbene	330	3,3'-Dimethoxy-4,4'-dihy- droxystilbene	336	6
4-Hydroxystilbene	322	Pterostilbene	324	2
4-Hydroxystilbene	322	Resveratrol	323	r
trans-Stilbene	310	Pinosylvin	312	2

RELATIONSHIP BETWEEN SPECTRA (BAND I) AND STRUCTURE OF STILBENES

* $\Delta \lambda$ = Difference of λ_{max} (band I) between stilbenes.

cis-isomer under U.V. light. The detecting reagent, 0.5 % potassium permanganate, was decolourized by all the stilbenes examined, except the acetylated compounds. Of the different spray reagents used, diazotized p-nitroaniline reagent was found to be the most suitable.

The spectral data of the stilbenes examined are tabulated in Table V and a typical spectrum of a stilbene, 4-hydroxystilbene, is shown in Fig. 2. Stilbenes exhibit, as a rule, high intensity absorption in the 308-336 nm region (band I) and the 281-313 nm region (band II). However, some stilbenes do not show band II, but have instead an inflection in this region. These stilbenes are 3,5,3',4'-tetrahydroxystilbene, 4,3'-dimethoxy-4'-hydroxystilbene glucoside and its acetate, 3,3'-dimethoxy-4,4'-dihydroxystilbene, rhapontin and its acetate, rhapontigenin and 3,4,2',4',6'-pentamethoxystilbene. The spectra of both *cis*-stilbene and the acetate of oxyresveratrol show only one absorption peak and this corresponds to band II. On the other hand, the acetate of pterostilbene shows in its spectrum an absorption maximum appropriate to band I. Our results in neutral solution confirm those of ERDTMAN⁹ for stilbenes 2, 4 and 10 (see Table V), KING *et al.*¹⁰ for stilbenes 11G and 13GA.

Compared with *trans*-stilbene, which is the more elongated isomer, the *cis*isomer shows an absorption maximum (band II) of lower intensity and of shorter

TABLE VII

INFLUENCE OF SODIUM ETHYLATE ON THE SPECTRA (BAND I) OF STILBENES

No. of	Stilbene	λ_{max} (nm)) - Constant (⊿λ*
group		EtOH	NaOEt- EtOH	
a	3'-Methoxy-4'-hydroxystilbene	327	365	38
	Pterostilbene	324	358	34
	4-Hydroxystilbene	322	355	33
	4,3'-Dimethoxy-4'-hydroxystilbene	332	360	28
b	3,3'-Dimethoxy-4,4'-dihydroxystilbene	336	359	23
	Chlorophorin	335	358	23
	Oxyresveratrol	332	353	21
	4,4'-Dihydroxystilbene	330	350	20
	3,5,3',4'-Tetrahydroxystilbene	330	350	20
	Resveratrol glucoside	324	345	21
2	Pinosylvin monomethyl ether	309	314	5
	Pinosylvin	312	316	4
1	<i>cis-</i> Stilbene	218**	281**	o**
	Acetate of oxyresveratrol	302**	302**	o**`
	trans-Stilbene	310	310	O
	Pinosylvin monomethyl glucoside	310	311	I
	Acetate of astringin	312	312	0
	Acetate of pterostilbene	314	315	I
	Acetate of 3'-methoxy-4'-hydroxystilbene			
	glucoside	321	321	0
	3'-Methoxy-4'-hydroxystilbene glucoside	322	322	0
	Acetate of rhapontin Acetate of 4,3'-dimethoxy-4'-hydroxystilbene	323	323	0
	glucoside	328	329	I
	4,3'-Dimethoxy-4'-hydroxystilbene glucoside	330	330	0
	3,4,2',4',6'-Pentamethoxystilbene	335	335	0
) ,	Resveratrol	323	338	15
	Astringin	331	346	15
	Rhapontin	329	327	2
1	Rhapontigenin	327	325	2
* .4		olomath hard	· · ·	
لاے بر ** ک	$\lambda = \lambda_{max}$ (NaOEt)— λ_{max} (EtOH) of the long wave max of band II.	elength, Dano	L 1.	
*** 4	λ of band II.			

wave-length. BRAUDE¹¹, SCOTT¹³, GILLAM AND STERN¹⁴ and RIEZEBOS AND HAVINGA¹⁵ have obtained similar results for cis- and trans-stilbenes. Free phenolic hydroxyl substitution in stilbene molecules raises the wavelength maxima, especially for the para-derivative. The introduction of one hydroxyl group into the benzene rings of stilbene produces a bathochromic shift of band I in the range of 7-12 nm (see Table VI) and also the introduction of one methoxyl group into the molecule causes a shift of 5 nm of band I to the longer wavelength. However, the conversion of a hydroxyl group into a methoxyl group in the stilbenes produces a small hypsochromic shift (3 nm).

Just as in the case of the flavonoid compounds¹⁶, the spectra of the stilbenes also undergo considerable shift with the use of reagents such as sodium ethylate, powdered sodium acetate and boric acid-sodium acetate. Bands I and II in the spectra of polyhydroxystilbenes undergo, as a rule, bathochromic shifts with sodium ethylate.

The bathochromic shifts of band I with sodium ethylate were I-38 nm (see Table V). Sodium ethylate seems to ionize phenolic groups located at any position of the stilbene molecule, because it is difficult to correlate the location and number of hydroxyl groups with the spectral shifts. However, the stilbenes can be divided into five groups depending on the changes which take place in their spectra with sodium ethylate (see Table VII):

(a) Compounds which contain only one of the hydroxyl groups in the *para*-position of the benzene rings of the stilbenes, have shifts of 28-38 nm.

(b) Stilbenes which contain an equal number of hydroxyl groups in both benzene rings in the molecule, have shifts of 20–23 nm.

(c) Compounds containing one or more hydroxyl groups in one of either benzene rings, *e.g.*, pinosylvin monomethyl ether or pinosylvin, show bathochromic shifts of 4-5 nm.

(d) The spectra of those compounds in which free phenolic hydroxyl groups are either absent or substituted by glucosyl and acetyl groups do not shift with sodium ethylate. In addition, acetylation and glucosidation of a phenolic hydroxyl group nullify their effects on the absorption.

(e) The shift in absorption maximum after the addition of sodium ethylate to some stilbenes is accompanied by a decrease in the absorption of band I. This band in the spectrum of resveratrol, in particular, becomes merely an inflection of very low intensity.

On the other hand, the shifts, after the addition of sodium ethylate to the stilbenes in groups a-d, are accompanied by a decrease in the absorption-intensity of band II. o-Dihydroxy compounds, e.g., 3,5,3',4'-tetrahydroxystilbene and astringin, rhapontin and rhapontigenin apparently decompose rapidly in strongly alkaline solutions, because the spectrum of these compounds in sodium ethylate tends to decrease the intensity of absorption to a considerable extent. The spectra of chlorophorin, pterostilbene and its acetate also showed a considerable decrease in the absorption-intensity with alkaline solution. Stilbenes exhibit no significant change in the positions of bands I and II of their spectra on the addition of sodium acetate, but, as exceptions, chlorophorin, pterostilbene or the acetate of pterostilbene have hypsochromic shifts of 5, 7 and 4 nm, respectively (see Table V). In the case of both, 3,5,3',4'-tetrahydroxystilbene and astringin, band I in their spectra shifted (3 nm towards the longer wavelength) on the addition of both boric acid and sodium acetate. This is due, evidently, to the presence of ortho-dihydroxyl groups in these stilbene molecules. 3,5,3',4'-Tetrahydroxystilbene can be, in consequence, distinguished from the 3,5,2',4'-tetrahydroxyl derivative, which shows a hypsochromic shift (6 nm) in response to the addition of boric acid-sodium acetate. Chlorophorin, pterostilbene and its acetate, rhapontin and rhapontigenin, on the other hand, showed hypsochromic shifts (5-21 nm) of band I in the presence of boric acid and sodium acetate.

ACKNOWLEDGEMENTS

We are grateful to Profs. M. HASEGAWA, T. KONDO, T. J. KING, B. LINDBERG, T. R. SESHADRI, J. W. CLARKE-LEWIS, Drs. F. H. YORSTEN, E. WALCZAK AND W. WIENIAWSKI for providing some of the stilbenes.

SUMMARY

The R_F values of 26 stilbene aglycones and glucosides have been determined in several solvent systems by means of paper chromatography and thin-layer chromatography. Most stilbenes in paper chromatograms showed a straight-line relationship between R_M value and the number of free phenolic hydroxyl groups.

The absorption spectra of 28 stilbenes in alcohol with or without added sodium acetate, sodium ethylate and boric acid-sodium acetate have been measured. Interpretations of the spectral changes have been made in terms of the structure of stilbenes which also can be divided into several groups due to spectral changes with added sodium ethylate. The presence of ortho-dihydroxyl groups in stilbene molecules can be detected by the spectral changes with boric acid-sodium acetate.

REFERENCES

1 H. LYN, Enzymologia, 23 (1961) 231.

- 2 H. ERDIMAN, Svensk Papperstid., 42 (1939) B44; Ann. Chem., 539 (1939) 116; Tappi, 32 (1949) 303.
- 3 W. E. HILLIS, P. NELSON AND G. ZADOW, Appila, 19 (1966) 111.
- 4 J. FRANC, V. KOVAR AND F. MIKES, Mikrochim. Acta, No. 1-2 (1966) 133.
- 5 L. JURD AND R. M. HOROWITZ, J. Org. Chem., 22 (1957) 1618. 6 G. H. MANSFIELD, T. SWAIN AND C. G. NORDSTRÖM, Nature, 172 (1953) 23.
- 7 L. JURD, Arch. Biochem. Biophys., 63 (1956) 376.

- 8 E. C. BATE-SMITH AND R. G. WESTALL, Biochim. Biophys. Acta, 4 (1950) 427. 9 H. ERDTMAN, Svensk Kem. Tidskr., 56 (1944) 134. 10 F. E. KING, T. J. KING, D. H. GODSON AND L. C. MANNING, J. Chem. Soc., (1956) 4477.
- 11 E. A. BRAUDE, J. Chem. Soc., (1949) 1902. 12 E. WALCZAK AND W. WIENIAWSKI, Bull. Acad. Polon. Ser. Sci. Chim., 12 (1964) 823.
- 13 A. T. SCOTT, in Introduction of the Ultraviolet Spectra of Natural Products, Pergamon, Oxford,
- 1964, p. 97. 14 A. E. GILLAM AND E. S. STERN, in An Introduction to Electronic Absorption Spectroscopy in Organic Chemistry, Edward Arnold Ltd., London, 1954, p. 233.
- 15 G. RIEZEBOS AND E. HAVINGA, Rec. Trav. Chim., 80 (1961) 446.
- 16 L. JURD, in T. A. GEISSMAN (Editor), The Chemistry of Flavonoid Compounds, Pergamon, Oxford, 1962, p. 107.

J. Chromatog., 32 (1968) 323–336